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Abstract. The infinite-dimensional representation of the boundaryK-operator (the solution of
the reflection equation) is considered. The trigonometricK-matrix is studied as a degenerate
case of the elliptic operator. A method to construct the elliptic Dunkl operator is proposed, and
the relationship with the quantum many-body problem is also discussed.

1. Introduction

Solutions of the Yang–Baxter equation have been widely studied. The algebraic structure
has been revealed as the quantum group [1]. Among solutions, the infinite-dimensional
representation of theR-matrix was recently given [2, 3]; theR-matrix is viewed as
an operator acting on a two-variable function space. The elliptic solution proposed by
Shibukawa and Ueno has become a useful operator both to construct the finite-dimensional
representation of theR-matrix and to give the mutually commuting differential operators.
In this paper, we shall investigate the structures and applications of theR-operator and
boundaryK-operator.

Throughout this paper we use the doubly quasi-periodic functionσµ(z) ≡ σµ(z, τ ),

σµ(z + 1) = σµ(z) σµ(z + τ) = e2π iµσµ(z) (1.1)

whereτ is an arbitrary number, satisfyingτ ∈ C and =τ > 0. The functionσµ(z) only
has simple poles on the latticeZ + τZ, and the residue at the origin is one. Note that the
function σµ(z) can be written explicitly as

σµ(z) = ϑ1(z − µ)ϑ ′
1(0)

ϑ1(z)ϑ1(−µ)
(1.2)

whereϑ1(z) ≡ ϑ1(z, τ ) is the Jacobi theta function,

ϑ1(z, τ ) =
∑

n∈Z+ 1
2

exp
(
iπn2τ + 2π in

(
z + 1

2

))
. (1.3)

The elliptic functionσµ(z) has the following properties (see, for example, [4]):

σµ(z) = −σ−µ(−z) (1.4a)

σµ(z) = −σz(µ) (1.4b)

σλ(z)σλ+µ(w) + σλ+µ(z + w)σµ(−z) − σµ(w)σλ(z + w) = 0 (1.4c)
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σλ(z)σµ(z) = σλ+µ(z)(ζ(z) − ζ(λ) − ζ(µ) − ζ(z − λ − µ)) (1.4d)

σµ(z)σ−µ(z) = ℘(z) − ℘(µ) (1.4e)

lim
µ→0

d

dz
σµ(z) = −℘(z) − 2η1 . (1.4f )

We denoted℘(z) and ζ(z) as the Weierstrass℘-function andζ -function, respectively;
℘(z) = −ζ ′(z).

In terms of the elliptic functionσµ(z), Shibukawa and Ueno introduced the elliptic
R-operator,

R(ξ)f (z1, z2) = σµ(z12)f (z1, z2) − σξ (z12)f (z2, z1) . (1.5)

Here and hereafter we use the conventional notations, e.g.z12 ≡ z1 − z2. Parameterξ is
called the spectral parameter. The ellipticR-operator defined above satisfies the Yang–
Baxter equation (YBE) (see figure 1),

R12(ξ12)R
13(ξ13)R

23(ξ23) = R23(ξ23)R
13(ξ13)R

12(ξ12) . (1.6)

The operatorRjk acts on a function ofN variables by viewing it as a function of thej th and
kth variable. Note that we obtain the rational and trigonometricR-operators as degenerate
cases of elliptic operator (1.5):

σµ(z) →
{

π cot(πz) − π cot(πµ) trigonometric

z−1 − µ−1 rational .
(1.7)

Figure 1. Yang–Baxter equation.

Besides theR-matrix as a solution ofYBE, the boundaryK-matrix was introduced
to solve the spin system with an open boundary using the technique of quantum inverse
scattering [5, 6]; algebraically theK-matrix is defined as a solution of the so-called reflection
equation (RE, or boundaryYBE). As in the case of theR-matrix, we can also regard the
K-matrix as an operator acting on a functional space [7]. We define boundaryK-operators
which act on a space of functions of single variable as

K I(ξ)f (z) = σ2ξ (z)f (z) − σ2ν(z)f (−z) (1.8a)

K II (ξ)f (z) = σξ (2z)f (z) − σν(2z)f (−z) . (1.8b)

These twoK-operators satisfyRE (see figure 2),

R12(ξ12)(K(ξ1) ⊗ 1)R21(ξ1 + ξ2)(1 ⊗ K(ξ2))

= (1 ⊗ K(ξ2))R
12(ξ1 + ξ2)(K(ξ1) ⊗ 1)R21(ξ12) (1.9)

whereR(ξ) means Shibukawa–Ueno’s elliptic operator (1.5) satisfyingYBE.
The validity of RE is proved directly by use of identities for the elliptic functionσµ(z)

(equation (1.4)). It is remarkable that we have two solutions, type I and type II. The roles
of these twoK-operators may be regarded as a ‘reflection’ associated with the classical root
systems of B and C type. This will be clarified in this paper.

The rest of this paper is organized as follows. In the first part, we consider the
trigonometric representation of theR- and K-matrices. The ellipticR-matrix, which is
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Figure 2. Reflection equation.

called Belavin’s completelyZ-symmetricR-matrix [8], can be obtained using the ‘gauge
transformation’ of the ellipticR-operator [9]. The BelavinR-matrix reduces in the simple
case to the Baxter eight-vertex model. The boundaryK-matrix associated with Belavin’sR-
matrix can also be computed from the ‘gauge-transformed’ ellipticK-operator [10]. These
modified operators are essentially the same as those used in the definition of the elliptic
Dunkl operators. In section 2, we construct the finite-dimensional representation of theR-
andK-matrices for the trigonometric case, which can be obtained as a degenerate case of
the Belavin elliptic matrix.

In the second part of this paper, we shall construct the elliptic Dunkl operator
based onYBE and RE. The Dunkl operator was first introduced as a set of integrable
differential-difference operators associated with the root system [11]. The Dunkl operator
plays an important role in studying the algebraic structures of certain one-dimensional
integrable many-body problems with inverse-square exchange (Calogero–Sutherland–Moser
model) [12–16]. Though the Dunkl operator was originally defined as a ‘rational’ operator,
one can generalize operators into trigonometric [17] and elliptic [18, 19] cases. Both the
rational and trigonometric operators are regarded as degenerate cases of the elliptic Dunkl
operators. In section 3 we give a simple method to construct the elliptic Dunkl operators
associated with the classical root systems by using the infinite-dimensional representation
of the R- and K-operators. This method is a generalization of [18]. We define a set
of mutually commuting elliptic difference operator (quantum Knizhnik–Zamolodchikov–
Bernard difference operator), and show that the elliptic Dunkl operator appears as a quasi-
classical limit. Also shown is that these elliptic Dunkl operators constitute mutually
commuting Hamiltonian sets of Calogero–Sutherland–Moser systems associated with the
classical root systems.

2. Finite-dimensional representation

We construct the ‘finite-dimensional’ representation of theR- andK-matrix by restricting the
functional space to a finite-dimensional space. In order to construct Belavin’sZ-symmetric
R-matrix and its boundaryK-matrix whose elements are elliptic, one should use the gauge-
transformed ellipticR- andK-operators [9, 10]. We note that these operators are essentially
the same as the modifiedR- andK-operators used in the next section. In this section, we
treat the trigonometric case as a degenerate case of the elliptic function (1.7), and discuss
the algebraic structure for a simple case.

We choose basesfa(z) of the finite-dimensional functional space as

fa(z) = exp(2π iaz) . (2.1)

For an n-dimensional functional spaceVn, the index a takes a value ina ∈
{− n−1

2 , − n−1
2 + 1, . . . , n−1

2 }. For these bases, the action of theR-operator is written
explicitly as ann2 × n2-matrix. We define theR(n)-matrix as

R(n)(θ) = 1

2i
(θ1/2 − θ−1/2)(q1/2 − q−1/2)R(ξ) (2.2)
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where the spectral parameter and deformation parameter are defined byθ = exp(2π iξ)

andq = exp(2π iµ), respectively. It is easy to calculate the matrix elements of thisR(n)-
matrix [2],

R(n)(θ)fa ⊗ fb

=



−q−1/2(θ1/2 − θ−1/2)fa ⊗ fb + θ1/2(q1/2 − q−1/2)fb ⊗ fa

+(θ1/2 − θ−1/2)(q1/2 − q−1/2)
∑

b<c<a

fa+b−c ⊗ fc

for a > b

(θ−1/2q1/2 − θ1/2q−1/2)fa ⊗ fa for a = b

−q1/2(θ1/2 − θ−1/2)fa ⊗ fb + θ−1/2(q1/2 − q−1/2)fb ⊗ fa

−(θ1/2 − θ−1/2)(q1/2 − q−1/2)
∑

a<c<b

fc ⊗ fa+b−c

for a < b .

(2.3)

This R(n)-matrix mapsVn ⊗ Vn to Vn ⊗ Vn.
The trigonometric boundaryK-matrices associated withR(n)-matrix are also constructed

from the infinite-dimensionalK-operator (1.8a) in the same manner. We set the finite-
dimensional representation of the boundaryK-matrices as

K I
(n)(θ) = 1

2i
(θ1/2 − θ−1/2)(p1/2 − p−1/2)K I(ξ) (2.4a)

K II
(n)(θ) = 1

2i
(θ − θ−1)(p − p−1)K II (ξ) (2.4b)

with p = exp(2π iν). By definition, we obtain an explicitn-dimensional representation for
the reflectionK-matrices as follows:

K I
(n)(θ)fa =



−θ−1/2(p1/2 − p−1/2)fa + p1/2(θ1/2 − θ−1/2)f−a

+(θ1/2 − θ−1/2)(p1/2 − p−1/2)
∑
c<|a|

fc for a > 0

(θ1/2p−1/2 − θ−1/2p1/2)f0 for a = 0

−θ1/2(p1/2 − p−1/2)fa + p−1/2(θ1/2 − θ−1/2)f−a

−(θ1/2 − θ−1/2)(p1/2 − p−1/2)
∑
c<|a|

fc for a < 0

(2.5a)

K II
(n)(θ)fa =



−θ−1(p − p−1)fa + p(θ − θ−1)f−a

+(θ − θ−1)(p − p−1)
∑
c<|a|

fc for a > 0

(θp−1 − θ−1p)f0 for a = 0

−θ(p − p−1)fa + p−1(θ − θ−1)f−a

−(θ − θ−1)(p − p−1)
∑
c<|a|

fc for a < 0 .

(2.5b)

By extracting the ‘permutation part’ [2] of these matrices, we obtain the triangularR-matrix
of Drinfeld and its reflectionK-matrices. We can check directly that bothYBE (1.6) and
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RE (1.9) are satisfied by the following triangularR- andK-matrices:

R(n)(θ)fa ⊗ fb

=


−q−1/2(θ1/2−θ−1/2)fa ⊗ fb+θ1/2(q1/2−q−1/2)fb ⊗ fa for a > b

(θ−1/2q1/2 − θ1/2q−1/2)fa ⊗ fa, for a = b

−q1/2(θ1/2−θ−1/2)fa ⊗ fb+θ−1/2(q1/2−q−1/2)fb ⊗ fa for a < b

(2.6)

K I
(n)(θ)fa =


−θ−1/2(p1/2 − p−1/2)fa + p1/2(θ1/2 − θ−1/2)f−a for a > 0

(θ1/2p−1/2 − θ−1/2p1/2)f0 for a = 0

−θ1/2(p1/2 − p−1/2)fa + p−1/2(θ1/2 − θ−1/2)f−a for a < 0

(2.7a)

K II
(n)(θ)fa =


−θ−1(p − p−1)fa + p(θ − θ−1)f−a for a > 0

(θp−1 − θ−1p)f0, for a = 0

−θ(p − p−1)fa + p−1(θ − θ−1)f−a for a < 0 .

(2.7b)

We consider the algebraic structures of the two-dimensional representation forR- and
K-matrices in more detail [20]. In this case,R- andK-matrices can be written as follows:

R(2)(θ) = θ−1/2 · R − θ1/2 · PR−1P (2.8)

K I
(2)(θ) = θ1/2 · K−1

I − θ−1/2 · KI (2.9)

K II
(2)(θ) = θ · K−1

II − θ−1 · KII (2.10)

where constant matricesR andKI,II are defined as

R =


q1/2

q1/2 q1/2 − q−1/2

q−1/2

q1/2

 (2.11)

KI ≡ K =
(

0 p−1/2

p1/2 p1/2 − p−1/2

)
(2.12)

KII = KσxK =
(

0 p−1

p p − p−1

)
. (2.13)

MatricesP and σx denote the permutation matrix and the Pauli spin matrix, respectively.
By substituting the definition of theR- andK-matrices intoYBE and RE, we get relations
among matricesR andK,

R12R13R23 = R23R13R12 (2.14)

R − PR−1P = (q1/2 − q−1/2)P (2.15)

K − K−1 = p1/2 − p−1/2 (2.16)(
1 ⊗ K

)
R21

(
K ⊗ 1

)
R12 = R21

(
K ⊗ 1

)
R12

(
1 ⊗ K

)
. (2.17)

These relations can be taken as the defining relations for theq-deformed affineSL(2) Lie
algebra. We call the first identity the constant Yang–Baxter equation. The second and the
third equations are called the Hecke relation. BothK- and R-matrices are regarded as
representations of the Hecke algebra. The difference between two representations originates
from that theR-operator acts on a two-variable functional space while theK-operator acts
on a single-variable space. Thus the fourth relation (constant reflection equation) can be
viewed as the interrelation between the two representations [21].
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3. Elliptic Dunkl operator

We shall define the elliptic Dunkl operators associated with the classical root systems based
on the ellipticR- andK-operators [18, 19]. The Dunkl operator is first defined in [11] as
a set of integrable differential-difference operators associated with the root systems. These
operators become a powerful tool in studying algebraic structures of the one-dimensional
integrable many-body problems with inverse-square exchange (Calogero–Sutherland–Moser
model, CSM model for short). For the trigonometric Dunkl operators associated with the
classical root systems, a method has been recently proposed to systematically define them
from the quantum Knizhnik–Zamolodchikov (qKZ) type difference operators [22, 7, 23]. The
qKZ difference operators are constructed in terms of theR- andK-operators, and constitute
a mutually commuting family. In this section, using the gauge-transformed ellipticR-
andK-operators [18, 9, 10], we construct the elliptic Dunkl operators associated with the
classical root systems.

For our purpose, we use another boundary operatorK̄(ξ). The K̄-operator is defined
as a solution of the ‘conjugate’ reflection equation (RE2),

R12(ξ21)(1 ⊗ K̄(ξ2))R
21(ξ1 + ξ2)(K̄(ξ1) ⊗ 1)

= (K̄(ξ1) ⊗ 1)R12(ξ1 + ξ2)(1 ⊗ K̄(ξ2))R
21(ξ21) . (3.1)

Notice that theK̄-operator is related with theK-operator, which is defined as a solution of
RE (1.9), as

K̄(ξ) = t̂K(ξ)t̂ (3.2)

where t̂ means a reflection operator acting on a single-variable functional space,

t̂f (z) = f (−z) . (3.3)

Actually one can see thatRE2 (equation (3.1)) is proved by using relation (3.2) fromRE (1.9).
As a consequence, we also have a two-conjugate boundary operator,K̄ I,II (ξ), as solutions
of RE2.

Based on the method of [18], we introduce the shift operatorTκ(ξ),

Tκ(ξ)f (z) = f

(
z − ξ

κ

)
. (3.4)

Here κ is an arbitrary parameter. With the shift operatorTκ(ξ), we define the modified
(gauge-transformed)R- andK-operators as

Rκ(ξ) = (1 ⊗ Tκ(µ)) · R(ξ) · (Tκ(−µ) ⊗ 1) (3.5)

K I,II
κ (ξ) = Tκ(−ν) · K I,II (ξ) · Tκ(ν) . (3.6)

The crucial point is that a set of modified operators,Rκ(ξ) and Kκ(ξ), also satisfiesYBE

andRE;

R12
κ (ξ12)R

13
κ (ξ13)R

23
κ (ξ23) = R23

κ (ξ23)R
13
κ (ξ13)R

12
κ (ξ12) (3.7)

R21
κ (ξ12)(Kκ(ξ1) ⊗ 1)R12

κ (ξ1 + ξ2)(1 ⊗ Kκ(ξ2))

= (1 ⊗ Kκ(ξ2))R
21
κ (ξ1 + ξ2)(Kκ(ξ1) ⊗ 1)R12

κ (ξ12) . (3.8)

Above YBE andRE are directly checked using properties of the shift operators,

Tκ(ξ)Tκ(η) = Tκ(ξ + η) (3.9)

[R(ξ), Tκ(η) ⊗ Tκ(η)] = 0 . (3.10)
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The first one is trivial. The second identity follows from that operatorR(ξ) depends only
on the difference of two functional variables. We note the explicit actions of these modified
operators;

• Rκ -operator,

Rκ(ξ)f (z1, z2) = 1

σµ(ξ)

{
σµ

(
z12 + µ

κ

)
f

(
z1 + µ

κ
, z2 − µ

κ

)
− σξ

(
z12 + µ

κ

)
f (z2, z1)

}
(3.11)

• Kκ -operators,

K I
κ(ξ)f (z) = 1

σ2ν(2ξ)

{
σ2ξ

(
z + ν

κ

)
f (z) − σ2ν

(
z + ν

κ

)
f

(
−z − 2ν

κ

)}
(3.12a)

K II
κ (ξ)f (z) = 1

σν(ξ)

{
σξ

(
2z + 2ν

κ

)
f (z) − σν

(
2z + 2ν

κ

)
f

(
−z − 2ν

κ

)}
. (3.12b)

Here for our convenience, we have normalized the modified operators to satisfy the unitarity
condition

R12
κ (ξ)R21

κ (−ξ) = 1 (3.13)

Kκ(ξ)Kκ(−ξ) = 1 . (3.14)

See also that we have the quasi-classical conditions for these operators;

Rκ(ξ = 0) = ŝ Rκ(ξ)|µ=0 = 1

Kκ(ξ = 0) = 1 Kκ(ξ)|ν=0 = t̂ .
(3.15)

Operatorŝ denotes an exchange operator acting on a two-variable functional space,

ŝ12f (z1, z2) = f (z2, z1) . (3.16)

Based on these modified operators, we shall show that the elliptic Dunkl operators
associated with the classical root systems are defined from the mutually commuting
difference operators. First we review the construction of the A-type Dunkl operator [18].
We use a set of difference operators{T̂j |j = 1, . . . , N} in terms of the modifiedR-operator
as

T̂j = Rjj−1
κ (ξjj−1) . . . Rj1

κ (ξj1) · RjN
κ (ξjN) . . . Rjj+1

κ (ξjj+1) . (3.17)

HereR
jk
κ signifies the operator onV ⊗N , acting asRκ on thej th andkth spaces and identity

on the other space. This operator can be viewed as the ‘infinite-dimensional’ representation
of the inhomogeneous transfer matrix, and has appeared as aqKZ operator [24] or as a form
factor equation [25]. The integrability of the operatorsT̂j ,[

T̂j , T̂k

] = 0 (3.18)

follows from YBE (equation (3.7)). Taking parameterµ as an infinitesimal parameter,
µ → 0, we find that the operator̂Tj reduces in a quasi-classical limit into a form,

T̂j = 1 + µ

κ

N∑
k:k 6=j

{∂j − ∂k + κσξjk
(zjk)ŝjk + κ(ρ(ξjk) − ρ(zjk))} + O(µ2)

where we have used notations,∂j = ∂/∂zj and

ρ(z) = ϑ ′
1(z)

ϑ1(z)
.



2142 K Hikami

When we assume that the completely translational-invariant functional space (function
depends only on differences of any two variables),

f (z1 + w, z2 + w, . . . , zN + w) = f (z1, z2, . . . , zN) w ∈ C

we have an identity,
∑N

j=1 ∂j = 0. With this identity, one sees that the difference operator

T̂j is written as

T̂j = 1 + µ
N

κ
d̂ ′
j + O(µ2)

where we have used the differential-difference operatord̂ ′
j as

d̂ ′
j = ∂j + κ

N

N∑
k:k 6=j

σξjk
(zjk)ŝjk + κ

N

N∑
k:k 6=j

{ρ(ξjk) − ρ(zjk)} .

It is obvious from the commutativity ofT̂j (3.18) that the operator̂d ′
j is integrable;[

d̂ ′
j , d̂

′
k

] = 0. In order to modify the differential-difference operatord̂ ′
j into a more useful

form, let us define a (translation-invariant) product function,

Ha(z) = Ha(z1, . . . , zN) =
N∏

j<k

(ϑ1(zjk))
a

and introduce the differential-difference operatord̂j as a gauge-transformation ofd̂ ′
j ,

d̂j ≡ (Ha(z))
−1 · d̂ ′

j · Ha(z) .

By choosing parametera properly and redefiningκ, we get differential-difference operator
with elliptic coefficients as a quasi-classical limit of theqKZ operatorT̂j ,

d̂j = ∂j + κ

N∑
k:k 6=j

σξjk
(zjk)ŝjk (3.19)

which constitutes a set of mutually commuting differential-difference operators,[
d̂j , d̂k

] = 0 . (3.20)

The operatord̂j is called the A-type elliptic Dunkl operator. From a set of the commuting
operators{d̂j |j = 1, . . . , N}, one can construct a set of ‘Hamiltonians’ of the quantum
N -body dynamical system,

ÎA
n =

N∑
j=1

(
d̂j

)n
. (3.21)

One of the integrable operators is calculated as

ÎA
2 =

∑
j

∂2
j + κ

∑
j,k

′
σ ′

ξjk
(zjk)ŝjk + κ2

∑
j,k

′{℘(ξjk) − ℘(zjk)}

where
∑′ means that any two indices do not coincide. Subtracting terms of orderξ−2 and

setting all rapidities to zero (ξ → 0), we obtain theN -body Hamiltonian of the A-type
elliptic CSM model withsu(n) spin degree of freedom [26],

ÎA
2 →

N∑
j=1

∂2
j −

N∑
j,k=1

′
℘(zjk) · (

κP̂jk + κ2
)
. (3.22)
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Here we use thesu(n) spin permutation operator aŝPjk, which satisfies

P̂ 2
jk = 1 P̂jkP̂kl = P̂j lP̂jk = P̂klP̂j l .

Note that we have restricted the functional space to

P̂jk ŝjk = 1 . (3.23)

As coefficients ofξ−2 are constants, the commutativity between the Hamiltonian of the
elliptic CSM model (3.22) and higher operatorsÎA

n is preserved.
In the process of constructing the elliptic A-type Dunkl operatord̂j , we have used only

modifiedR-operator in theqKZ operator (3.17). In the rest of this section, we show that the
W-type (W = B, C, BC, D) elliptic Dunkl operator can be constructed using the explicit
representation of modifiedR- andK-operators. As a set ofqKZ-type mutually commuting
difference operators, we have another family, which may be called theqKZ operator with
boundary [5, 7, 27]. This operator is written in terms of modifiedR- andK-operators as

Ŷj = Rjj−1
κ (ξjj−1) . . . Rj1

κ (ξj1) · Kj
κ (ξj ) · R1j

κ (ξ1 + ξj ) . . . Rj−1j
κ (ξj−1 + ξj )

×Rj+1j
κ (ξj+1 + ξj ) . . . RNj

κ (ξN + ξj ) · K̄j
κ (ξj ) · RjN

κ (ξjN) . . . Rjj+1
κ (ξjj+1) .

(3.24)

Here K
j
κ and K̄

j
κ means theKκ - and K̄κ -operators acting on anN -variable function by

viewing it as of thej th variable. The integrability of operatorŝYj ,[
Ŷj , Ŷk

] = 0 (3.25)

is proved by use ofYBE (3.7) and RE (3.8). Note that, in the description of theqKZ

operator (3.24), we can use the boundaryK- and K̄-operators as both type-I and type-II
operators. Thus we have four sets of mutually commuting difference operators. In the
following we show that these four sets of operators correspond to those associated with the
classical B, C and BC-type root system.

As an example, we use in (3.24) type-I boundary operatorsK I andK̄ I . In this case, the
quasi-classical limit of the boundaryqKZ operator can be calculated as

Ŷj = 1 + µ

κ

{
(2(N − 1) + α + ᾱ)∂j + κ

N∑
k:k 6=j

(σξjk
(zjk)ŝjk + σξj +ξk

(zj + zk)t̂j t̂k ŝjk)

+κ(α + ᾱ) · σ2ξj (zj )t̂j

+κ

N∑
k:k 6=j

(ρ(ξjk) − ρ(zjk) + ρ(ξj + ξk) − ρ(zj + zk))

+κ(α + ᾱ) · (ρ(zj ) + ρ(2ξj ))

}
+ O(µ2) .

Here we have set parameters in operatorsKκ andK̄κ asν = αµ and ν̄ = ᾱµ, respectively.
Following the method in constructing the A-type Dunkl operator, we use a ‘B-type’ elliptic
product function,

H B
a,b(z) =

N∏
j<k

(ϑ1(zjk)ϑ1(zj + zk))
a ·

N∏
j=1

(ϑ1(zj ))
b .

When one transforms the operator as

Ŷj → (H B
a,b(z))

−1 · Ŷj · H B
a,b(z)



2144 K Hikami

and fixes parameters (a, b, α, ᾱ andκ) properly, we get the quasi-classical limit of theqKZ

operatorŶj as

Ŷj = 1 + µ

κ
· ŷB

j + O(µ2),

where operator̂yB
j is defined as

ŷB
j = ∂j + κ1

N∑
k:k 6=j

{σξjk
(zjk)ŝjk + σξj +ξk

(zj + zk)t̂j t̂k ŝjk} + κ2σ2ξj (zj )t̂j . (3.26)

Parametersκ1 and κ2 denote newly redefined arbitrary parameters. One sees from the
integrability of Ŷj (3.25) that the operator̂yB

j , which we call the B-type elliptic Dunkl
operator, also constitutes a mutually commuting family,[

ŷB
j , ŷB

k

] = 0 . (3.27)

OperatorŝyB
j includes ‘reflection terms’̂tj t̂k ŝjk which follow from the boundaryK-operators.

From the B-type differential-difference operators which commute each other, we can
construct a set of ‘Hamiltonians’ of the quantum many-body problem as

ÎB
n =

N∑
j=1

(
ŷB
j

)n
. (3.28)

As the first non-trivial operators, one obtains

ÎB
2 =

∑
j

∂2
j + κ2

1

∑
j,k

′{−℘(zjk) − ℘(zj + zk) + ℘(ξjk) + ℘(ξj + ξk)}

+κ1

∑
j,k

′{σ ′
ξjk

(zjk)ŝjk + σ ′
ξj +ξk

(zj + zk)t̂j t̂k ŝjk}

+κ2
2

∑
j

{−℘(zj ) + ℘(2ξj )} + κ2

∑
j

σ ′
2ξj

(zj )t̂j .

We see that coefficients forξ−2 do not depend on dynamical variables{zj }. By subtracting
terms of O(ξ−2) and taking all rapidities to zero (ξ → 0), we find that operator̂IB

2 has the
form

ÎB
2 →

N∑
j=1

∂2
j −

N∑
j,k=1

′{℘(zjk) · (
κ1P̂jk + κ2

1

) + ℘(zj + zk) · (
κ1Q̂j Q̂kP̂jk + κ2

1

)}
−

N∑
j=1

℘(zj ) · (
κ2Q̂j + κ2

2

)
(3.29)

which coincides with the Hamiltonian of the B-type ellipticCSM model withsu(n) spin [26].
Notice that in this case we restrict the functional space to

P̂jk ŝjk = 1 Q̂j t̂j = 1 (3.30)

where operatorQ̂j acts on a spin space ofj th particle, and satisfies

Q̂2
j = 1 P̂jkQ̂j = Q̂kP̂jk .

As the second example, we chooseK II and K̄ II boundary operators in theqKZ-type
difference operatorŶj (equation (3.24)). By the same calculations, we get a set of the
mutually commuting differential-difference operator,[

ŷC
j , ŷC

k

] = 0 (3.31)
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in which the differential-difference operatorŷC
j is calculated as

ŷC
j = ∂j + κ1

N∑
k:k 6=j

{σξjk
(zjk)ŝjk + σξj +ξk

(zj + zk)t̂j t̂k ŝjk} + κ3σξj (2zj )t̂j . (3.32)

In this case, we have used the gauge-transformation by a C-type product function

H C
a,b(z) =

N∏
j<k

(ϑ1(zjk)ϑ1(zj + zk))
a ·

N∏
j=1

(ϑ1(2zj ))
b .

See the difference in operatorsŷB
j and ŷC

j ; in coefficient oft̂j , the rapidityξ and functional
variablez play opposite roles. In this case the Hamiltonian can be calculated as

ÎC
2 =

N∑
j=1

(
ŷC
j

)2

→
N∑

j=1

∂2
j −

N∑
j,k=1

′{℘(zjk) · (
κ1P̂jk + κ2

1

) + ℘(zj + zk) · (
κ1Q̂j Q̂kP̂jk + κ2

1

)}
−

N∑
j=1

℘(2zj ) · (
2κ3Q̂j + κ2

3

)
(3.33)

which is called the Hamiltonian of the C-typeCSM model [26].
As the last case, let us chooseK I - andK̄ II -operators (or,K II - andK̄ I -operators) in the

qKZ operatorŶj . In the same manner, using the gauge-transformations by a BC-type elliptic
product function

H BC
a,b,c(z) =

N∏
j<k

(ϑ1(zjk)ϑ1(zj + zk))
a ·

N∏
j=1

(ϑ1(2zj ))
b(ϑ1(zj ))

c (3.34)

we obtain the BC-type Dunkl operator,

ŷBC
j = ∂j + κ1

N∑
k:k 6=j

{σξjk
(zjk)ŝjk + σξj +ξk

(zj + zk)t̂j t̂k ŝjk} + (κ2σ2ξj (zj ) + κ3σξj (2zj ))t̂j

(3.35)

and the Hamiltonian is calculated from̂IBC
2 ;

ÎBC
2 =

N∑
j=1

(
ŷBC
j

)2

=
∑

j

∂2
j + κ1

′∑
j,k

{σ ′
ξjk

(zjk)ŝjk + σ ′
ξj +ξk

(zj + zk)t̂j t̂k ŝjk}

+ κ2
1

′∑
j,k

{−℘(zjk) + ℘(ξjk) − ℘(zj + zk) + ℘(ξj + ξk)}

+
∑

j

{κ2σ
′
2ξj

(zj ) + 2κ3σ
′
ξj
(2zj )}t̂j

+
∑

j

{κ2
2(−℘(zj ) + ℘(2ξj )) + κ2

3(−℘(2zj ) + ℘(ξj )) + κ2κ3(−℘(zj ) + ℘(ξj ))} .
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In limiting case,ξ → 0, the Hamiltonian reduces to the following form:

ÎBC
2 →

N∑
j=1

∂2
j −

N∑
j,k=1

′{℘(zjk) · (κ1P̂jk + κ2
1) + ℘(zj + zk) · (κ1Q̂j Q̂kP̂jk + κ2

1)}

−
N∑

j=1

{℘(zj ) · (κ2Q̂j + κ2
2 + κ2κ3) + ℘(2zj ) · (2κ3Q̂j + κ2

3)} (3.36)

which should be regarded as the Hamiltonian of the BC-type ellipticCSM model.
Notice that the Hamiltonian of the D-typeCSM model corresponds to the B- or C-type

CSM model without external potential [26],

ÎD
2 =

N∑
j=1

∂2
j −

N∑
j,k=1

′{℘(zjk) · (
κ1P̂jk + κ2

1

) + ℘(zj + zk) · (
κ1Q̂j Q̂kP̂jk + κ2

1

)} . (3.37)

This operator can be constructed from the D-type Dunkl operator,

ŷD
j = ∂j + κ1

N∑
k:k 6=j

{σξjk
(zjk)ŝjk + σξj +ξk

(zj + zk)t̂j t̂k ŝjk} (3.38)

which constitute a mutually commuting family,[
ŷD
j , ŷD

k

] = 0 . (3.39)

4. Concluding remarks

In this paper we have studied the infinite-dimensional representation of theR- and K-
matrices, which satisfy both the Yang–Baxter equation and reflection equation. Following
the idea of [2, 3], we regardR andK as elliptic operators acting on the functional space.
Actually by restricting the functional space to the finite-dimensional space, the Belavin’s
elliptic R-matrix and its associated boundaryK-matrix can be computed [9, 10]. As
degenerate case we have studied the algebraic structure of the trigonometricR- and K-
matrices, and obtain the defining relations for constantR- andK-matrices. As bothR- and
K-matrices represent the Hecke algebra,RE should be viewed as the interrelation between
two representations [7].

In the second part, we derived the explicit forms of the elliptic Dunkl operator
associated with the classical root systems. We have shown that the Dunkl operators are
in fact obtainable as the quasi-classical limit of the quantum Knizhnik–Zamolodchikov-type
difference operators. As a consequence, it is easy to see that the elliptic Dunkl operator
constitutes a family of the mutually commuting differential-difference operators. From
the mutually commutativity, one can define a set of Hamiltonians of the quantum many-
body problems in terms of the Dunkl operators. One of the higher integrable operators
coincides with the Hamiltonian of the ellipticCSM model associated with the classical root
systems [26].

It has appeared in recent works [28] that the trigonometric Dunkl operators are closely
related with the Macdonald polynomials and the character formula in conformal field theory.
Also known is that the affine character for the level-1 su(n) WZNW model can be regarded as
the large-N limit of the Rogers–Szeg̈o polynomial, which is a certain limit of the Macdonald
polynomial [15, 29]. The Dunkl operator formalism may help us to generalize these facts.
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